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Let Q denote the Banach space (sup norm) of quasi-continuous functions defined
on the interval [0, 1]. Let C denote the subspace comprised of continuous functions.
Met M denote the closed convex cone in Q comprised of nondecreasing functions.
For f€ Q and 1 < p < 0, let f, denote the best L -approximation to f by elements
of M. 1t is shown that f, converges uniformly as p - oo to a best L -approximation
to f by elements of M. If f € C, then each f, € C; so f, € C.

We begin with some introductory remarks and notation. By a function,
unless we specify otherwise, we mean a real-valued function defined on the
interval [0, 1].

A function f is in Q if and only if (a) f(x*)=Ilim,_,. f(y) exists,
0<x< 1, and (b) f(x~)=Ilim,,_f(y) exists, 0 < x < L.

Let P denote the set of partitions 7= {¢}/_, of [0,1] (ie,
0=1<t, < <t,=1), let I denote the indicator function of a subset E
of [0, 1] (i.e.,, I(x)=1 if x € E and I (x) =0 otherwise), and let S denote
the dense linear subspace of Q comprised of simple step functions f =
Dol + X bidy, )

Consider the elements f of Q as bounded Lebesgue measurable functions,
and let [f]={g: g is measurable, f = g a.e.} be the corresponding element
of L. A function fin Q is zer0 a.e. < f(x*)=f(x")=0,0 < x < 1. Thus,
if we let Q* denote the space of functions fin Q such that f(0)=f(0") and
Jx)=f(x"), 0 < x < 1, then we have a linear isometry between Q* and the
embedding of Q in L. This isometry permits us to restrict our attention to
Q% sowelet M*=MN Q* and §* = SN Q@*. Thus, f € S* if there exists
n € Psuchthat f=alj, ,\+ 25101, .-

For a bounded function fand 7 € P, f, € $* is defined by

f,,(x)==sup{f(y):y€ (%05 8]} X € [ty, 1],
=sup{f(y): yE€ iy ), x€(@ 4} i> 1

/. is defined by replacing sup with inf.
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10 DARST AND SAHAB

A bouned function f is in Q* if and only if for each ¢ > 0 there exists
n€P such that 0 f, — f, <e. Thus, lim, f, =lim, f,=f (uniformly),
S € Q%*, where lim, denotes the Moore—Smith or directed set limit. The fact
that S* is dense in Q* permits us to use a resuit of Ubhaya for functions
defined on a finite partially ordered set.

Because L, is a uniformly convex Banach space, 1 < p < oo, for each
SE Q¥ there is a unique nearest point f, € M*. We show that f, converges
uniformly as p — oo to a best L -approximation f; to f by elements of M*.

After establishing convergence of {f,},.,, we conclude with two
examples. The first example shows how f, compares with the set of all best
L -approximations to f, and the second example points out that f, and f,
(for large p) may increase while f, is a constant function. The latter example
suggests that the presence of a trend in a data sequence may depend on how
one defines trend.

To establish convergence of {f,},., we recall the following theorem of
Ubhaya [2]:

Let X={x,,x,,.,x,}] be a finite partially ordered set and let
S=i} = {f(x))}i_, be a real-valued function defined on X. For each p,

H

1 < p < o0, define a weighted p-norm of f by

n 1/p
o= | X @rilfil] 1)
i=1
where w, = {w, ;}{_, > 0 is a given weight function defined on X. Similarly,
if @={w,;}{_, >0 is a weight function, define the weighted uniform norm

IHleo of f by
I/l = max w;|fil. @

1€ig<n

DEFINITION. A subset L © X is a lower set if x, €L and x; € X, x; < x;
implies that x; € L. Similarly a subset U< X is an upper set if x; € U and
x; € X, x; > x; implies that x; € U.

DEFINITION. Let .# denote the class of monotone increasing functions
on X, ie., the function h= {h;}{_, € # if h(x;,) = h; < h;= h(x;) whenever
X, X; € X and x; < x;.

Fact 1 (Ubhaya). Let f={f;}}._, be fixed. For each p, 1 < p < o0, let
8,=18,.i}i-, be the function defined on X by

€pi = (lrfr:li?s)én ufr}lel}; U"(L nv) 3)

= min min U,/(LN
(L:ieL) (Uiiel) o ),
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where L and U are lower and upper sets, respectively, and U,(L N U) is the
unique real number minimizing } ., ~, w,;|f; — ul’. Then g is the unique
monotone increasing function satisfying

IS = &lly., = inf{llS = A, hE #}

or

n I/p
[i o, \fi- | iy e el @)
i=1

n‘ 1/p
[\_ w0,/ - g,,.,w"] —inf

i=1

THEOREM 1 (Ubhaya). Let X and f be as defined above. For each p,
1< p<oo, let w,={w,;};., >0 be a weight function and assume that
there exists a weight function w = {w,}7_, > 0 such that

0 < lim inf(w, /w?) < lim sup(w, /w]) < 0 (5)
p—xc p—x

Jor all i. Then the monotone increasing functions g,, 1 < p < oo, defined by
(3) and satisfying (4) converge as p — o© to a monotone increasing function
8w = {8x.i}]-\ Which satisfies

I/ = gl = inf{llf = Al :hE.#}
or

N f— | = inf Af—h.i {h T . .
max w;|f;— gl =infl max w,|f,~ ki (k. EAL (6)

Moreover, for every i< n

8x.i=lim g, .= max min U (LNU)
* p—-xc ’ fUiel) (lL:ieL)

(7N

= min max U_(LNU)
(LiieL} (U3iel)

where U (L N U) is the wunique real number minimizing
max;e, ~p ;| f; — ul for all real u.

Remark 1. Notice that if there exist real numbers J, p such that
0<d<gw,;<p for all p and all i, then clearly (5) holds if and only if
w; =1 for all i; or else if w; < 1, then w?—> 0 as p— o0, and if w; > 1, then
w;— oo as p— oo. In either case, (5) can not be satisfied. In our application
of Theorem 1, w, ;= —¢,_,and w,=1,i<n.

LemMA 1. If fE€ S}k, then f,€ S} for allp, 1 < p < .
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Proof. Suppose that f, is not a constant a.e. on some subinterval
(tj_,, t;]. Then let

I=essinf{f,():t;_, <<t}

and
u=essup{f,(£):t;_, <t}

Clearly / < u. Choose £ € [/, u] such that
|f; =&l =inf{|fi—r|:r€ [, u]}
Then the monotone increasing function f* defined by
y@)=¢ 4 <<y,
= f,(0), otherwise,
is a better best L -approximation to f since

-sgi= [ J! e sora ]! 15-cral”
i
5T vimseras|

i=1 "ti-y 41
(£

1/p
o F0P dt]

or

=S50 <ISf = Lol

This contradiction shows that f, must have a constant value everywhere on
(¢;,_;» ;) and hence f, € S*.

THEOREM 2. Let f € S} be given by
S=lilpo,, + 22 Sy, (®)

For every p, 1 < p< w, let w,={w,;}{., be defined by
Wy =t—1t_, )

Jor all i. Let g,= { g, ,}i-, be as defined by (3). Then f, is given by

n
So= 8l + Zz 8ol - (10)
=
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Proof. By the last lemma we have f, € S¥. For every i, let
xp=(t;+_1)/2, i=1,2,..,n,

and let X = {x,,..,x,}. Consider {f;}]., as a finite real-valued function
defined on X and let {h;}7_, (h; < h; for all i < j) be a monotone increasing
function on X. Then by substituting the values of w, , in Eq. (4) we conclude
that

n ql/p r

n 1/p
[Z G-t el | <|S (t.~—t,-_l)|f,-—hi|”]

i=1 |

r
~
—

or

S0 st "< [S [ one]”

L1 tll

which is equivalent to the conclusion that

If = Solls < USRI,

where
n
h=h g, + Z Rl
i=2
is any monotone increasing function belonging to S*. |

THEOREM 3. Let f€ S¥ and let f, be as given in Theorem 2. Then f,
converges as p — o0 to the monotone increasing function f,, € S¥ given by

n
Soo = 8oo1djoy T+ Z 8co,idity 1t (11)
fae

where g, ,=1lim,, g, is given by (7). Moreover, f,, is a best L -
approximation to f by monotone increasing functions.

Progf. Let X and w, be as defined above. To apply Theorem 1, observe
that (5) holds if and only if w, = 1 for all i (see Remark 1). In this case, the
theorem implies that g,= {g,;}/., converges to g, = { gy, }i-1 Which is
given by (7). Therefore, lim,_,, f, exists and it is given by (11).

For the last part of the theorem, substitute for the values of w; in (6) to
obtain

max |f;— 8.l < max |fi—hl,  {h}i, EA. (12)
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Thus, f, is a best L -approximation to f by elements of S*. Let & be a
monotone increasing function defined on £. We show that there is a
monotone increasing function g € S* such that

1f = 8l SIS = Allo-

Indeed for i=1, 2,..., n, let
g; = {3[essup(k(x)) + essinf(h(x))]: ¢;_, < x < t;}.
Then clearly

lf,-—gi|<essup |fi_h(x)\s Ly <x<ti!

for all i. Now define g on 2 by
&= 8o+ Z 8l 1
i=2

Then g € S¥ and it follows from the last inequality together with (12) that

This concludes the proof.

Remark 2. Let f € S*. Then there is a partition 7 of £ such that f € S*.
Using Lemma 1 and the conclusions of Theorems 2 and 3, we find the best
L ,-approximations f,, 1 < p < o0, to f by monotone increasing functions.
Then we showed that the monotone increasing function f, =lim,, f, is
well defined.

To put this another way, denote f by f, to indicate that f € S, Similarly,
let

Jro= )y (13)
Then
fuwo = F )= lim £, (14)
is well defined.
Next, we generalize these results to Q*, the space of all quasi-continuous

real-valued functions which are left continuous at every point of £ except at
0, where they are right-continuous. We start with
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Remark 3. (a) Let f and g be elements of Q*. Then it is shown in {1,
p. 366, Theorem 3(ii}] that if £ g, then

/<8, (15)

for all p, 1 < p< o0,
(b) It is clear that for any constant ¢ and for all f€ @* we have

(f+e)p=Sfte (16)
forall p, 1 < p < 0.
DerFINITION. Let f€ O* and let 7= {t,}_, be a partition of £2. The
oscillation of f over [t,,¢;] is defined by
O, [to> 1,]) = sup{(f(x) = f()): %, Y € [t 1,]}
and for i = 2, 3,..., n; the oscillation of f over (¢;,_,,¢,| is defined by
O (ti- 1> 1,]) = sup{(f(x) = f(1)): %, Y € (11, 1]}
Finally, we define the oscillation of f over 7 by
O(f, ) = max{O(f, [ty 1), OCf, (t;_ 1o t;]):i =2, 3y nl. (17)
LEMMA 2. Let n'={t/}"., be a refinement of m={t;}I_, (written
n < 7'). Then

O(f,n') < O(f; m). (18)
Proof. Since t; < ¢,, then it is clear from the above definition that

O, (15, 1) S O, [ty ,])) < O, 7). (19)

Next, let 2k’ <n’. Then there exists some k, 1< k< n such that
(tr_ysth]) S (ty-1» 1) Consequently, it follows that

O(f, Wr—rs 1) SO (1415 0l]) < O m).

By taking the sup over all k¥’ and combining (19) we conclude (18). 1

Remark 4. Let f€Q* and let € >0 be given. Then there exists a
partition 7 such that

O(f,n) <e.

640/38/1-2
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Moreover, if 0 < ¢’ <¢, then we can find a refinement n’ of 7 such that
O(f,n') < ¢'. In other words, by further refinements of # we can make
O(f,m') as small as we wish. We denote this by writing

lim O(f, ) = 0.

DerFINITION.  Let f € Q* and let 7= {t,}"_, be a partition of . Let f,
and f, be the step functions defined by

n

Ju= 0y ; Lo (20)
and
Lr=ad gyt éz ady_ .o 21
where
a=sup{f(x):t,_, <xL}; i=12..,n
and

a;=inf{f(x): t,_, <x<t;}; i=1,2,.,n

By Remark 2 we define

Jew=(Dp> (22)
[n‘p = (_fn)p; (23)

and
f (f )oo - ;g?ofn p° (24)

LEMMA 3. For all p, 1 < p < o, we have

0 <in.p _-[mp < 6(f’ m) (26)

and

0< frco = S0 SO ). 27
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Proof. Let x € Q2. Then x € (¢;_,, ¢;] for some j < n. Hence

0 < [o() = f(x) =sup{ f(¥): t;_, < y <4} —inf{f(p): -, <y <1y}
= sup{(/(»1) “'f(yz)): Yis 1€ (44, 4l
= G(f; (41> tj]) < 5(./; )

or
[0 fx)+0(f,n)
for all x € Q2. Therefore we obtain
o <L+ Oy m).
By (15) and (16) we obtain
<Y+ 0 M), =L+ OUsm) (28)

or

an,p —._fn,p< 0~(.f; ")'

Finally, we let p— oo to obtain (27). 1

LEMMA 4. Letf€ Q* and let n < '. Then
Jro $furp $Jnrp Ko <frp + O m) (29)
and
<o v € fnrco < Lpoo + OS5 7). (30)
Proof. Since n < 7', then it clearly follows from their definitions that
L $ L KT & e
Thus, it follows from (15) and (28) that

fnp\ n’ p< ' p\fnp<fnp+o(.fn)
which is (29). Letting p -+ co we obtain (30). [

THEOREM 4. Let f € Q* with best monotone L ,-approximation f,. Then

lim f, , =lim £, , = f. (31)
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Proof. By (29) and (26) we conclude that for m < ' we obtain
O<f—n fn p\ P fnp
< fn,p fn DR O(f 7[)
but by Remark 4 we have
lim O(f, 7) =0,
so that we obtain
0<f_n,p—f_n’,p <e

for every ¢>0 provided that z is chosen appropriately. Therefore
lim, f,, , = f, exists. Similarly, we have

O<f [np<fn’.p_ n.p
< T,P .[ O(ﬂ )<£’

which implies that lim, f ,=f, exists. Applying (26) once more we
conclude that f =f,=f7. We need to show that [} =f, so let £ >0 be
given. Then there is a partition 7 such that

fo<f+e and  f<[f,+e
which implies upon using (15) and (16) that
fop<fote and f,<f,,+¢E
Taking the limit over #, we conclude that

fi<f,+e and  f,<f¥+e

or
L=rr 1
THEOREM 5. Let '€ Q* with best monotone L -approximation f,. Then
lim f, o =lim f, , = f, = lim f,. (32)
T n - p—o0 ]

Proof. From (30) and (27) we obtain for 7 < '
0 g.f—n,oo _fn’,oo <fn,oo _._fn’ [ee]
<o = e <OUim) <6

for an appropriate choice of z. Hence lim_ f, . = f,, exists.
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Similarly, we have

=xJn,0 _—-_fn,oo < 0~(ﬂ 7[) <é¢

for an appropriate choice of z. Hence lim,, f, , = f,. exists. Now it follows
from (27) that

fw=fw=f®'

We still need to show that f, converges uniformly to f, . Let ¢ > O be given.
Then for an appropriate 7 we have by the last theorem that

If;—f‘n.p' < 6/3

for all p, 1 < p < o0, and also we have

lf_n'.oo '—fool < 6/3

Since f, , = lim, fw by definition, then there exists a real number p, > 1
such that

| frp = frol <€/3
for all p > p,. Combining these last three inequalities, we obtain
‘fp"‘fool < ‘f;z_'f_n.p‘ + |fn.p_f_n,oo| + !./-:r:.oo —fool
<e3+¢e/3+¢/3=c¢

for all p > p,. This completes the proof.

COROLLARY 1. Let fand g be in Q*. Then

(@) iff<gon, thenf < gy, and

(b) if c is a real constant, then (f +¢), =fo +C.

Proof. This corollary is an immediate consequence of Remark 3 and the
fact that lim,_ . f,=f,. N

THEOREM 6. Suppose f € Q* is continuous. Then f, is continuous.

Proof. Let x be an arbitrary but fixed point in (0, 1) and let ¢ > 0 be
given. Then

15500) = LD SIS (0) = fo p0) + 1 e p6) = fr ()
+1fen(?) = S (33)
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By Theorem 4, we know that

£y)=1im F, ,(»)

for all y € 2. Therefore we can choose n = {¢;}]_, such that

(1) Each of the first and third terms on the right-hand side of (33) is
less than ¢/3.

(2) If £, can be written as

n
fn =a, I(to.tll + Zz dil“i—n';l’ (34)

then we can have by uniform continuity of f over £ that
|a,—a;_,| <&/9 (35)

for all i =2, 3,..., n.
Thus, (33) becomes

£5) = S (P) < &/3 + &/3 +1f, (%) = fr (D) (36)

for all y€ Q. All we need now is to show the existence of a real number
0 > 0 such that

|fap%) = Frep(P)] < €/3 37

for all y € (x — 4, x + 8). To show this we first observe that if £, is given by
(34), then f,, , must be given by

Jap=b1lyg 0+ rZ2 bily, . (38)

for some real numbers b, < b, < --- < b,. We now have two cases to con-
sider.

Casel: t;_, <x <t for some j< n. Then it follows that
|fn.p(x) “‘f_,..p()’)| =|b;—b;|=0
for all y € (¢;_,, ;). Let 6 = min{(x —¢;_,), (¢; — x)}. Then (36) becomes
|/p00) — fo(2)) < (26/3) + 0 <

for all y € (x — 4, x + ) which implies the continuity of f, at x in this case.
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bj+1
Ej }
>e/3 17(6/9 aJ.+1 >e/9
b,
J
ti Xt ti

FIGURE |

Case2: x=t; for some j < n. Then it follows from (38) that
If-n.p(x) _fn,p(y)l =|b;—b;| =0
for all y € p(t,_,, x]. Thus, let us consider y € (x,¢,,,] and suppose that
[fen(P) = Fap ) = Fo p(9) = Frap®) = by, — B; > €/3.
Then we obtain (Fig. 1)
/3 <by —by=(by,— )+ @, —a)+(@—b)

since (@,,,—a;) <&/9 by (35); then we may assume without loss of
generality that

by — Gy > E/9. (39)

In this case let
bj*+l=bj+l_8/9' (40)

Hence

bjtl_b/=(bj+l_bj)—8/9
>e/3—¢/9=2/9>0.

Let f ¥, be the monotone increasing step function defined by

J
Fk
Sro=bdyy + ’Zz by .

n
*
+ bJ+11('j.!j+1] + . 2]: s bll(ll_l.lll'
I=J+
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Then

12— Tl = 5 Gt )15= 8 + (o = 1) b~ Gl

n

+ Y G-ty b—al, 41)
i=j+2
while
“fn,p—f_nHﬁ: 2 =t 16— alfs (42)
i=1 ,

but observe that (39) and (40) imply that
bfii—d =01, —¢/9-4;,,

=(bjs1— 1) —€/9>€/9—¢/9=0

or
0< b;k+1 —de < bj+1 “dj+1
or
[ — ;1P <1bjyy — @541
which implies by comparing (41) and (42) that
7%= Fally <Ufwp = Frllp-

Contradiction! Therefore our assumption is false and hence we conclude that

)f_n,p(y) _f_n',p(x)l < 6/3

for all y € (x,¢;,,]. Take d =min{(x —¢,_,), (t;,, —x)} to conclude that
(36) becomes

LX) — (0l <e/3+¢e/3+¢/3=¢
for all y € (x — J, x + &). This completes the proof. M

COROLLARY 2. The function f,=lim,_ f, is continuous when f is
continuous.

Proof. Since f, is the uniform limit of continuous functions, it must be
continuous. [
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ExXAMPLE 1. Let f be the real-valued continuous function on [0, 1]
defined by

f(x) = sin 5 7(x — %), 0<x<y,
=2sin ¥ n(x — §), l<xgs,
=15(x— %), 3<x<s
=1+sin¥ax(x—3), 3<xgL

Then f, is the real-valued nondecreasing continuous function given by

Sop(x) = sin 4 n(x — ), 0<x< 5,
=0, H<x<d,
=15(x~1), 1<xgs
=1, I<xgih
=1+sinPrax—3), 4r<xgl

It is shown in [3, p. 664, Theorem 2] that a nondecreasing function g is a
best L -approximation to f € Q* by elements of M* if and only if

8K gL 8
where g and ¢ are given by
gx)=sup{(f(z)-6):z€[0,x]}, x€]0,1],
and
g0 =inf{(f@) +0):z€ [x 1]}, x€[0,1],
where
8= d(f, M*)=inf{||f — k|, : h € M*}.
Thus, if f is the function in Example 1, then it is easily seen that
a(f,M*)=2
and hence it follows that

&(x) = (f(x) + 2) Lg/15,3/5 + 2L 35,1315 + (FX) + 2) Lz s

and

S(x) =(f(x)—2) 1[0,2/15] —Lons, 645 T (f(x)—2) Ii16/a5,251-
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FIGURE 2

Finally, notice that f, is not the average of g and g on [0, 1], e.g., on
[0, 5] (see Fig. 2)

fo#3(g+8)  everywhere.

ExXAMPLE 2. Let f be the real-valued step function defined on {0, 1] by

S =351+ 55,415+ Higis,onsg

Figure 3 is a sketch of f and the corresponding f,, f,, and f,,. Notice that
J; is constant while f, is increasing and by our earlier results f, should
converge monotonically to

Jo= %I[o,l/s] + %1(1/5.8/15] + %1(8/15,11
as p— 0.
Remark 5. If f is given by

S=kdg g+ kgt + ka1 43)

(t2(n—1)st2n—11?

where

2<k <k, < <k,
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i
f
£ fa
____________________ f4
f
0 1/16 3/15  4/15 8/15 9715 1 f
FIGURE 3
and
n -1
Hh=0= (12 k]) ’
=1
i
tz,—<' k,.)a, i>2,
=1
iy =ty + 0, i22,
then for every p, f, must have the form
So=Cliom+ Gl t - + 8l ar (44)

where 0 < {, < {, < --- <, and {; depends on p for all i.
Suppose we want to compute f, which has form (44). Then {, must be the
unique real number minimizing the function

8:(0)=0d(k, — C)Z + ok, — 1){2_
Differentiating g, we obtain

g1(6,) =—28(k, — &) + 26(k, — 1)¢,
=20k, ({,—1)=0.
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Thus ¢, = 1. Similarly ¢, is the unique real number minimizing the function
£i(8) = o(k; — {)* + o(k; — 1){7,

which implies that {; =1 for all i {n. Hence f,=1 on [0, 1].
Next, let us compute f, for p > 2, where f, has form (44) and fis given by
(43). Then {; will be the unique real number minimizing the function

80 =(k; — 0P + (k; — 1)
Differentiating g, we obtain
&) =—plk;— LY~ + plk,— N~ =0.

Dividing by (p{?~!), we obtain

(ki - 1) = (kl/ci) - l)p_l
or
G=k/((k;— 1) + 1), (45)

where A=p—1landi=1,2,.,n
Observe that as A - oo in (45), {; - k;/2, which says that f, converges to a
function £, given by

foo = (kl/z) I[o,zzl + (k2/2) I(tz,t4] +oeet (kn/z) I(t,,_l,ll’ (46)

which is consistent with our definition of f_, where f is defined above.
Finally, we show that for a fixed A > 1 and a fixed 7, the value of {={(;
increases as k = k; increases. From (45), consider

C= k)= k/((k=1)" + 1)
We show that y’(k) > O for all k > 2. Thus, letting @ = 1/4, we have
1 (k— 1! ]
(k) = —k
v =G [((k~1)"+1)2

B ] ak(k — 1)~
T k—=1D"+1 [1_ k—1)*+1 ]

To show that y’(k) > 0, all we need to show is that

ak(k — 1)2-"!

m— <L (47)



APPROXIMATION BY MONOTONE FUNCTIONS

But indeed we have
ak(k—1)*""  (k—1)%ak(k—1)""
k—1)+1 k—D*1+ 1/(k—1)%)
_ ak
k—DA+1/(k—1))
k
T Ak =1+ (k= D/Gk— DY

Since a=1/A< 1, then (k—1)/(k—1)*>1, which implies
k—1+((k—1)/(k—1)*)) >k, or

k ko1
=1+ (=1 =1") "% 7

Hence, (47) is true and y’(k) > 0.

<L
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