Approximation of Continuous and Quasi-Continuous Functions by Monotone Functions

Richard B. Darst and Salem Sahab
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523, U.S.A.
Communicated by John R. Rice

Received April 4, 1981

Let Q denote the Banach space (sup norm) of quasi-continuous functions defined on the interval $[0,1]$. Let C denote the subspace comprised of continuous functions. Met M denote the closed convex cone in Q comprised of nondecreasing functions. For $f \in Q$ and $1<p<\infty$, let f_{p} denote the best L_{p}-approximation to f by elements of M. It is shown that f_{p} converges uniformly as $p \rightarrow \infty$ to a best L_{∞}-approximation to f by elements of M. If $f \in C$, then each $f_{p} \in C$; so $f_{\infty} \in C$.

We begin with some introductory remarks and notation. By a function, unless we specify otherwise, we mean a real-valued function defined on the interval $[0,1]$.

A function f is in Q if and only if (a) $f\left(x^{+}\right)=\lim _{y \rightarrow x+} f(y)$ exists, $0 \leqslant x<1$, and (b) $f\left(x^{-}\right)=\lim _{y \rightarrow x^{-}} f(y)$ exists, $0<x \leqslant 1$.

Let P denote the set of partitions $\pi=\left\{t_{i}\right\}_{i=0}^{n}$ of $[0,1]$ (i.e., $0=t_{0}<t_{1}<\cdots<t_{n}=1$), let I_{E} denote the indicator function of a subset E of $[0,1]$ (i.e., $I_{E}(x)=1$ if $x \in E$ and $I_{E}(x)=0$ otherwise), and let S denote the dense linear subspace of Q comprised of simple step functions $f=$ $\left.\sum_{i=0}^{n} a_{i} I_{\left[t_{i}\right]}+\sum_{i=1}^{n} b_{i} I_{t_{i-1}, t_{i}}\right)$.

Consider the elements f of Q as bounded Lebesgue measurable functions, and let $[f]=\{g: g$ is measurable, $f=g$ a.e. $\}$ be the corresponding element of L_{∞}. A function f in Q is zeio a.e. $\Leftrightarrow f\left(x^{+}\right)=f\left(x^{-}\right)=0,0<x<1$. Thus, if we let Q^{*} denote the space of functions f in Q such that $f(0)=f\left(0^{+}\right)$and $f(x)=f\left(x^{-}\right), 0<x \leqslant 1$, then we have a linear isometry between Q^{*} and the embedding of Q in L_{∞}. This isometry permits us to restrict our attention to Q^{*}, so we let $M^{*}=M \cap Q^{*}$ and $S^{*}=S \cap Q^{*}$. Thus, $f \in S^{*}$ if there exists $\pi \in P$ such that $f=a_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i>1} a_{i} I_{\left(t_{t-1}, t_{i}\right]}$.

For a bounded function f and $\pi \in P, \bar{f}_{\pi} \in S^{*}$ is defined by

$$
\begin{aligned}
\bar{f}_{\pi}(x) & =\sup \left\{f(y): y \in\left[t_{0}, t_{1}\right]\right\}, & & x \in\left[t_{0}, t_{1}\right], \\
& =\sup \left\{f(y): y \in\left(t_{i-1}, t_{i}\right]\right\}, & & x \in\left(t_{i-1}, t_{i}\right],
\end{aligned} \quad i>1 ;
$$

f_{n} is defined by replacing sup with inf.

A bouned function f is in Q^{*} if and only if for each $\varepsilon>0$ there exists $\pi \in P$ such that $0 \leqslant \bar{f}_{\pi}-\underline{f}_{\pi}<\varepsilon$. Thus, $\lim _{\pi} \bar{f}_{\pi}=\lim _{\pi} \underline{f}_{\pi}=f$ (uniformly), $f \in Q^{*}$, where $\lim _{\pi}$ denotes the Moore-Smith or directed set limit. The fact that S^{*} is dense in Q^{*} permits us to use a result of Ubhaya for functions defined on a finite partially ordered set.

Because L_{p} is a uniformly convex Banach space, $1<p<\infty$, for each $f \in Q^{*}$ there is a unique nearest point $f_{p} \in M^{*}$. We show that f_{p} converges uniformly as $p \rightarrow \infty$ to a best L_{∞} approximation f_{∞} to f by elements of M^{*}.

After establishing convergence of $\left\{f_{p}\right\}_{p>1}$, we conclude with two examples. The first example shows how f_{∞} compares with the set of all best L_{∞}-approximations to f, and the second example points out that f_{∞} and f_{p} (for large p) may increase while f_{2} is a constant function. The latter example suggests that the presence of a trend in a data sequence may depend on how one defines trend.

To establish convergence of $\left\{f_{p}\right\}_{p>1}$, we recall the following theorem of Ubhaya [2]:

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite partially ordered set and let $f=\left\{f_{i}\right\}_{i=1}^{n}=\left\{f\left(x_{i}\right)\right\}_{i=1}^{n}$ be a real-valued function defined on X. For each p, $1<p<\infty$, define a weighted p-norm of f by

$$
\begin{equation*}
\|f\|_{\omega, p}=\left[\sum_{i=1}^{n} \omega_{p, i}\left|f_{i}\right|^{p}\right]^{1 / p} \tag{1}
\end{equation*}
$$

where $\omega_{p}=\left\{\omega_{p, i}\right\}_{i=1}^{n}>0$ is a given weight function defined on X. Similarly, if $\omega=\left\{\omega_{i}\right\}_{i=1}^{n}>0$ is a weight function, define the weighted uniform norm $\left\|\|_{\infty}\right.$ of f by

$$
\begin{equation*}
\|f\|_{\infty}=\max _{1 \leqslant i \leqslant n} \omega_{i}\left|f_{i}\right| \tag{2}
\end{equation*}
$$

Definition. A subset $L \subseteq X$ is a lower set if $x_{i} \in L$ and $x_{j} \in X, x_{j} \leqslant x_{i}$ implies that $x_{j} \in L$. Similarly a subset $U \subseteq X$ is an upper set if $x_{i} \in U$ and $x_{j} \in X, x_{j} \geqslant x_{i}$ implies that $x_{j} \in U$.

Definition. Let denote the class of monotone increasing functions on X, i.e., the function $h=\left\{h_{i}\right\}_{i=1}^{n} \in \operatorname{if~} h\left(x_{i}\right)=h_{i} \leqslant h_{j}=h\left(x_{j}\right)$ whenever $x_{i}, x_{j} \in X$ and $x_{i} \leqslant x_{j}$.

Fact 1 (Ubhaya). Let $f=\left\{f_{i}\right\}_{i=1}^{n}$ be fixed. For each $p, 1<p<\infty$, let $g_{p}=\left\{g_{p, i}\right\}_{i=1}^{n}$ be the function defined on X by

$$
\begin{align*}
g_{p, i} & =\max _{\{U: i \in U\}} \min _{\{L: i \in L\}} U_{p}(L \cap U) \tag{3}\\
& =\min _{\{L: i \in L\}} \min _{(U: i \in U\}} U_{p}(L \cap U)
\end{align*}
$$

where L and U are lower and upper sets, respectively, and $U_{p}(L \cap U)$ is the unique real number minimizing $\sum_{j \in L \cap U} \omega_{p, j}\left|f_{j}-u\right|^{p}$. Then g is the unique monotone increasing function satisfying

$$
\ddot{\|} f-g \|_{\omega, p}=\inf \left\{\|f-h\|_{\omega, p}: h \in \mathscr{N}\right.
$$

or

$$
\begin{equation*}
\left[\bigcup_{i=1}^{n} \omega_{p, i}\left|f_{i}-g_{p, i}\right|^{p}\right]^{1 / p}=\inf \left\{\left|\sum_{i=1}^{n} \omega_{p, i}\right| f_{i}-\left.h_{i}\right|^{p}\right\}^{1 / p}:\left\{h_{i}\right\}_{i-1}^{n} \in \mathbb{N} \tag{4}
\end{equation*}
$$

Theorem 1 (Ubhaya). Let X and f be as defined above. For each p, $1<p<\infty$, let $\omega_{p}=\left\{\omega_{p, i}\right\}_{i-1}^{n}>0$ be a weight function and assume that there exists a weight function $\omega=\left\{\omega_{i}\right\}_{i-1}^{n}>0$ such that

$$
\begin{equation*}
0<\lim _{p \rightarrow \infty} \inf \left(\omega_{p, i} / \omega_{i}^{p}\right) \leqslant \lim _{p \rightarrow \infty} \sup \left(\omega_{p . i} / \omega_{i}^{p}\right)<\infty \tag{5}
\end{equation*}
$$

for all i. Then the monotone increasing functions $g_{\rho}, 1<p<\infty$, defined by (3) and satisfying (4) converge as $p \rightarrow \infty$ to a monotone increasing function $g_{\infty}=\left\{g_{\infty, i}\right\}_{i=1}^{n}$ which satisfies

$$
\|f-g\|_{\infty}=\inf \left\{\|f-h\|_{\infty}: h \in \mathbb{N}\right\}
$$

or

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant n} \omega_{i}\left|f_{i}-g_{x, i}\right|=\inf \left\{\max _{1 \leqslant i \leqslant n} \omega_{i} \mid f_{i}-h_{i} i:\left\{h_{i}\right\}_{i-1}^{n} \in \mathscr{H}\right\} \tag{6}
\end{equation*}
$$

Moreover, for every $i \leqslant n$

$$
\begin{align*}
g_{\infty, i}=\lim _{p \rightarrow \infty} g_{p, i} & =\max _{\{U: i \in U\}} \min _{\{L: i \in L\}} U_{\infty}(L \cap U) \tag{7}\\
& =\min _{\{L: i \in L\}} \max _{\{U: i \in L\}} U_{\infty}(L \cap U)
\end{align*}
$$

where $U_{\infty}(L \cap U)$ is the unique real number minimizing $\max _{j \in L \cap U} \omega_{j}\left|f_{j}-u\right|$ for all real u.

Remark 1. Notice that if there exist real numbers δ, ρ such that $0<\delta \leqslant \omega_{p, i}<\rho$ for all p and all i, then clearly (5) holds if and only if $\omega_{i}=1$ for all i; or else if $\omega_{i}<1$, then $\omega_{i}^{p} \rightarrow 0$ as $p \rightarrow \infty$, and if $\omega_{i}>1$, then $\omega_{i} \rightarrow \infty$ as $p \rightarrow \infty$. In either case, (5) can not be satisfied. In our application of Theorem $1, \omega_{p, i}=t_{i}-t_{i-1}$ and $\omega_{i}=1, i \leqslant n$.

Lemma 1. If $f \in S_{\pi}^{*}$, then $f_{p} \in S_{\pi}^{*}$ for all $p, 1<p<\infty$.

Proof. Suppose that f_{p} is not a constant a.e. on some subinterval $\left(t_{j-1}, t_{j}\right)$. Then let

$$
l=\operatorname{essinf}\left\{f_{p}(t): t_{j-1}<t \leqslant t_{j}\right\}
$$

and

$$
u=\operatorname{essup}\left\{f_{p}(t): t_{j-1}<t \leqslant t_{j}\right\}
$$

Clearly $l<u$. Choose $\xi \in[l, u]$ such that

$$
\left|f_{j}-\xi\right|=\inf \left\{\left|f_{j}-r\right|: r \in[l, u]\right\} .
$$

Then the monotone increasing function f_{p}^{*} defined by

$$
\begin{aligned}
f_{p}^{*}(t) & =\xi, & & t_{j-1}<t \leqslant t_{j}, \\
& =f_{p}(t), & & \text { otherwise },
\end{aligned}
$$

is a better best L_{p}-approximation to f since

$$
\begin{aligned}
\left\|f-f_{p}^{*}\right\| & =\left[\sum_{\substack{i=1 \\
l \neq j}}^{n} \int_{t_{i-1}}^{t_{1}}\left|f_{i}-f_{p}(t)\right|^{p} d t+\int_{t_{j-1}}^{t_{j}}\left|f_{j}-\xi\right|^{p} d t\right]^{1 / p} \\
& <\left[\sum_{\substack{i=1 \\
i \neq j}}^{n} \int_{t_{i-1}}^{t_{i}}\left|f_{i}-f_{p}(t)\right|^{p} d t+\int_{t_{j-1}}^{t_{j}} \mid f_{j}-f_{p}(t)^{p} d t\right]^{1 / p}
\end{aligned}
$$

or

$$
\left\|f-f_{p}^{*}\right\|_{p}<\left\|f-f_{p}\right\|_{p} .
$$

This contradiction shows that f_{p} must have a constant value everywhere on (t_{j-1}, t_{j}] and hence $f_{p} \in S_{\pi}^{*}$.

Theorem 2. Let $f \in S_{\pi}^{*}$ be given by

$$
\begin{equation*}
f=f_{1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} f_{i} I_{\left(t_{t-1}, t_{i}\right]} \tag{8}
\end{equation*}
$$

For every $p, 1<p<\infty$, let $\omega_{p}=\left\{\omega_{p, i}\right\}_{i=1}^{n}$ be defined by

$$
\begin{equation*}
\omega_{p, i}=t_{i}-t_{i-1} \tag{9}
\end{equation*}
$$

for all i. Let $g_{p}=\left\{g_{p, 1}\right\}_{i=1}^{n}$ be as defined by (3). Then f_{p} is given by

$$
\begin{equation*}
f_{p}=g_{p, 1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} g_{p, i} I_{\left(t_{i-1}, t_{i}\right]} . \tag{10}
\end{equation*}
$$

Proof. By the last lemma we have $f_{p} \in S_{\pi}^{*}$. For every i, let

$$
x_{i}=\left(t_{i}+t_{i-1}\right) / 2, \quad i=1,2, \ldots, n
$$

and let $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Consider $\left\{f_{i}\right\}_{i=1}^{n}$ as a finite real-valued function defined on X and let $\left\{h_{i}\right\}_{i=1}^{n}\left(h_{i} \leqslant h_{j}\right.$ for all $\left.i<j\right)$ be a monotone increasing function on X. Then by substituting the values of $\omega_{p, i}$ in Eq. (4) we conclude that

$$
\left[\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left|f_{i}-g_{p, i}\right|^{p}\right]^{1 / p} \leqslant\left[\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left|f_{i}-h_{i}\right|^{p}\right]^{1 / p}
$$

or

$$
\left[\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left|f_{i}-g_{p, i}\right|^{p}\right]^{1 / p} \leqslant\left[\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left|f_{i}-h_{i}\right|^{p}\right]^{1 / p}
$$

which is equivalent to the conclusion that

$$
\left\|f-f_{p}\right\|_{p} \leqslant\|f-h\|_{p}
$$

where

$$
h=h_{1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} h_{i} I_{\left(t_{i-1}, t_{i}\right]}
$$

is any monotone increasing function belonging to S_{π}^{*}.

Theorem 3. Let $f \in S_{\pi}^{*}$ and let f_{p} be as given in Theorem 2. Then f_{p} converges as $p \rightarrow \infty$ to the monotone increasing function $f_{\infty} \in S_{\pi}^{*}$ given by

$$
\begin{equation*}
f_{\infty}=g_{\infty, 1} I_{\left[0, t_{1}\right]}+\sum_{i=2}^{n} g_{\infty, i} I_{\left(t_{i-1}, t_{i}\right]} \tag{11}
\end{equation*}
$$

where $g_{\infty, i}=\lim _{p \rightarrow \infty} g_{p, i}$ is given by (7). Moreover, f_{∞} is a best $L_{\infty^{-}}$ approximation to f by monotone increasing functions.

Proof. Let X and ω_{p} be as defined above. To apply Theorem 1, observe that (5) holds if and only if $\omega_{i}=1$ for all i (see Remark 1). In this case, the theorem implies that $g_{p}=\left\{g_{p, i}\right\}_{=1}^{n}$ converges to $g_{\infty}=\left\{g_{\infty, i}\right\}_{i=1}^{n}$ which is given by (7). Therefore, $\lim _{p \rightarrow \infty} f_{p}$ exists and it is given by (11).

For the last part of the theorem, substitute for the values of ω_{i} in (6) to obtain

$$
\begin{equation*}
\max _{1<1<n}\left|f_{i}-g_{\infty, i}\right| \leqslant \max _{1<1 \leqslant n}\left|f_{l}-h_{i}\right|, \quad\left\{h_{i}\right\}_{i=1}^{n} \in \mathscr{A} \tag{12}
\end{equation*}
$$

Thus, f_{∞} is a best L_{∞}-approximation to f by elements of S_{π}^{*}. Let h be a monotone increasing function defined on Ω. We show that there is a monotone increasing function $g \in S_{\pi}^{*}$ such that

$$
\|f-g\|_{\infty} \leqslant\|f-h\|_{\infty}
$$

Indeed for $i=1,2, \ldots, n$, let

$$
g_{i}=\left\{\frac{1}{2}[\operatorname{essup}(k(x))+\operatorname{essinf}(h(x))]: t_{i-1}<x \leqslant t_{i}\right\} .
$$

Then clearly

$$
\left|f_{i}-g_{i}\right| \leqslant \operatorname{essup}\left|f_{i}-h(x)\right|, \quad t_{i-1}<x \leqslant t_{i}
$$

for all i. Now define g on Ω by

$$
g=g_{1} I_{\left[0, t_{]}\right]}+\sum_{i=2}^{n} g_{i} I_{\left(t_{l-1}, t_{]}\right]}
$$

Then $g \in S_{\pi}^{*}$ and it follows from the last inequality together with (12) that

$$
\left\|f-f_{\infty}\right\|_{\infty} \leqslant\|f-g\|_{\infty} \leqslant\|f-h\|_{\infty}
$$

This concludes the proof.

Remark 2. Let $f \in S^{*}$. Then there is a partition π of Ω such that $f \in S_{\pi}^{*}$. Using Lemma 1 and the conclusions of Theorems 2 and 3, we find the best L_{p}-approximations $f_{p}, 1<p<\infty$, to f by monotone increasing functions. Then we showed that the monotone increasing function $f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$ is well defined.

To put this another way, denote f by f_{π} to indicate that $f \in S_{\pi}^{*}$. Similarly, let

$$
\begin{equation*}
f_{\pi, p}=\left(f_{\pi}\right)_{p} \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
f_{\pi, \infty}=\left(f_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} f_{\pi, p} \tag{14}
\end{equation*}
$$

is well defined.
Next, we generalize these results to Q^{*}, the space of all quasi-continuous real-valued functions which are left continuous at every point of Ω except at 0 , where they are right-continuous. We start with

Remark 3. (a) Let f and g be elements of Q^{*}. Then it is shown in $\mid 1$, p. 366, Theorem 3(ii)] that if $f \leqslant g$, then

$$
\begin{equation*}
f_{p} \leqslant g_{p} \tag{15}
\end{equation*}
$$

for all $p, 1<p<\infty$,
(b) It is clear that for any constant c and for all $f \in Q^{*}$ we have

$$
\begin{equation*}
(f+c)_{p}=f_{p}+c \tag{16}
\end{equation*}
$$

for all $p, 1<p<\infty$.

Definition. Let $f \in Q^{*}$ and let $\pi=\left\{t_{i}\right\}_{i=0}^{n}$ be a partition of Ω. The oscillation of f over $\left[t_{0}, t_{1}\right]$ is defined by

$$
\tilde{O}\left(f,\left[t_{0}, t_{1}\right]\right)=\sup \left\{(f(x)-f(y)): x, y \in\left[t_{0}, t_{1}\right]\right\}
$$

and for $i=2,3, \ldots, n$; the oscillation of f over $\left(t_{i-1}, t_{i}\right]$ is defined by

$$
\tilde{O}\left(f,\left(t_{i-1}, t_{i}\right]\right)=\sup \left\{(f(x)-f(y)): x, y \in\left(t_{i-1}, t_{i}\right]\right\} .
$$

Finally, we define the oscillation of f over π by

$$
\begin{equation*}
\tilde{O}(f, \pi)=\max \left\{\tilde{O}\left(f,\left[t_{0}, t_{1}\right]\right), \tilde{O}\left(f,\left(t_{i-1}, t_{i}\right)\right): i=2,3, \ldots, n\right\} . \tag{17}
\end{equation*}
$$

Lemma 2. Let $\pi^{\prime}=\left\{t_{i}^{\prime}\right\}_{i=0}^{n^{\prime}}$ be a refinement of $\pi=\left\{t_{i}\right\}_{i=0}^{n}$ (written $\left.\pi<\pi^{\prime}\right)$. Then

$$
\begin{equation*}
\tilde{O}\left(f, \pi^{\prime}\right) \leqslant \tilde{O}(f, \pi) . \tag{18}
\end{equation*}
$$

Proof. Since $t_{1}^{\prime} \leqslant t_{1}$, then it is clear from the above definition that

$$
\begin{equation*}
\tilde{O}\left(f,\left[t_{0}^{\prime}, t_{1}^{\prime}\right]\right) \leqslant \tilde{O}\left(f,\left[t_{0}, t_{1}\right]\right) \leqslant \tilde{O}(f, \pi) . \tag{19}
\end{equation*}
$$

Next, let $2 \leqslant k^{\prime} \leqslant n^{\prime}$. Then there exists some $k, 1 \leqslant k \leqslant n$, such that $\left(t_{k^{\prime}-1}^{\prime}, t_{k^{\prime}}^{\prime}\right] \subseteq\left(t_{k-1}, t_{k}\right]$. Consequently, it follows that

$$
\tilde{O}\left(f,\left(t_{k^{\prime}-1}^{\prime}, t_{k^{\prime}}^{\prime}\right]\right) \leqslant \tilde{O}\left(f,\left(t_{k-1}, t_{k}\right]\right) \leqslant \tilde{O}(f, \pi)
$$

By taking the sup over all k^{\prime} and combining (19) we conclude (18).
Remark 4. Let $f \in Q^{*}$ and let $\varepsilon>0$ be given. Then there exists a partition π such that

$$
\tilde{O}(f, \pi)<\varepsilon .
$$

Moreover, if $0<\varepsilon^{\prime}<\varepsilon$, then we can find a refinement π^{\prime} of π such that $\tilde{O}\left(f, \pi^{\prime}\right)<\varepsilon^{\prime}$. In other words, by further refinements of π we can make $\tilde{O}\left(f, \pi^{\prime}\right)$ as small as we wish. We denote this by writing

$$
\lim _{\pi} \tilde{O}(f, \pi)=0
$$

Definition. Let $f \in Q^{*}$ and let $\pi=\left\{t_{i}\right\}_{i=0}^{n}$ be a partition of Ω. Let \bar{f}_{π} and \underline{f}_{π} be the step functions defined by

$$
\begin{equation*}
\bar{f}_{\pi}=\bar{a}_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{n} \bar{a}_{i} I_{\left(t_{i-1}, t_{i}\right]} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{f}_{\pi}=\underline{a}_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{n} \underline{a}_{i} I_{\left(t_{i-1}, t_{i}\right]} \tag{21}
\end{equation*}
$$

where

$$
\bar{a}_{i}=\sup \left\{f(x): t_{i-1}<x \leqslant t_{i}\right\} ; \quad i=1,2, \ldots, n
$$

and

$$
\underline{a}_{i}=\inf \left\{f(x): t_{i-1}<x \leqslant t_{i}\right\} ; \quad i=1,2, \ldots, n .
$$

By Remark 2 we define

$$
\begin{align*}
& \bar{f}_{\pi, p}=\left(\bar{f}_{\pi}\right)_{p}, \tag{22}\\
& \underline{f}_{\pi, p}=\left(\underline{f}_{\pi}\right)_{p} \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{f}_{\pi, \infty}=\left(\bar{f}_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} \bar{f}_{\pi, p}, \tag{24}\\
& \underline{f}_{\pi, \infty}=\left(f_{\pi}\right)_{\infty}=\lim _{p \rightarrow \infty} \underline{f}_{\pi, p} . \tag{25}
\end{align*}
$$

Lemma 3. For all $p, 1<p<\infty$, we have

$$
\begin{equation*}
0 \leqslant \bar{f}_{\pi, p}-f_{\pi, p} \leqslant \tilde{O}(f, \pi) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqslant \bar{f}_{\pi, \infty}-\underline{f}_{\pi, \infty} \leqslant \tilde{O}(f, \pi) \tag{27}
\end{equation*}
$$

Proof. Let $x \in \Omega$. Then $x \in\left(t_{j-1}, t_{j}\right]$ for some $j \leqslant n$. Hence

$$
\begin{aligned}
0 \leqslant \bar{f}_{\pi}(x)-\underline{f}_{\pi}(x) & =\sup \left\{f(y): t_{j-1}<y \leqslant t_{j}\right\}-\inf \left\{f(y): t_{j-1}<y \leqslant t_{j}\right\} \\
& =\sup \left\{\left(f\left(y_{1}\right)-f\left(y_{2}\right)\right): y_{1}, y_{2} \in\left(t_{j-1}, t_{j}\right]\right\} \\
& =\tilde{O}\left(f,\left(t_{j-1}, t_{j}\right]\right) \leqslant \tilde{O}(f, \pi)
\end{aligned}
$$

or

$$
\bar{f}_{\pi}(x) \leqslant \underline{f}_{\pi}(x)+\tilde{O}(f, \pi)
$$

for all $x \in \Omega$. Therefore we obtain

$$
\bar{f}_{\pi} \leqslant \underline{f}_{\pi}+\tilde{O}(f, \pi)
$$

By (15) and (16) we obtain

$$
\begin{equation*}
\bar{f}_{\pi, p} \leqslant\left(f_{\pi}+\tilde{O}(f, \pi)\right)_{p}=\underline{f}_{\pi, p}+\tilde{O}(f, \pi) \tag{28}
\end{equation*}
$$

or

$$
0 \leqslant \underline{f}_{\pi, p}-\underline{f}_{\pi, p} \leqslant \tilde{O}(f, \pi)
$$

Finally, we let $p \rightarrow \infty$ to obtain (27).

Lemma 4. Let $f \in Q^{*}$ and let $\pi<\pi^{\prime}$. Then

$$
\begin{equation*}
\underline{f}_{\pi, p} \leqslant \underline{f}_{\pi^{\prime}, p} \leqslant \bar{f}_{\pi^{\prime}, p} \leqslant \bar{f}_{\pi, p} \leqslant \underline{f}_{\pi, p}+\tilde{O}(f, \pi) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{f}_{\pi, \infty} \leqslant \underline{f}_{\pi^{\prime}, \infty} \leqslant \bar{f}_{\pi^{\prime}, \infty} \leqslant \bar{f}_{\pi, \infty} \leqslant \underline{f}_{\pi, \infty}+\tilde{O}(f, \pi) \tag{30}
\end{equation*}
$$

Proof. Since $\pi<\pi^{\prime}$, then it clearly follows from their definitions that

$$
\underline{f}_{\pi} \leqslant \underline{f}_{\pi^{\prime}} \leqslant \bar{f}_{\pi^{\prime}} \leqslant \bar{f}_{\pi}
$$

Thus, it follows from (15) and (28) that

$$
\underline{f}_{\pi, p} \leqslant \underline{f}_{\pi^{\prime}, p} \leqslant \bar{f}_{\pi^{\prime}, p} \leqslant \bar{f}_{\pi, p} \leqslant \underline{f}_{\pi, p}+\tilde{O}(f, \pi)
$$

which is (29). Letting $p \rightarrow \infty$ we obtain (30).

TheOrem 4. Let $f \in Q^{*}$ with best monotone L_{p}-approximation f_{p}. Then

$$
\begin{equation*}
\lim _{\pi} \vec{f}_{\pi, p}=\lim _{\pi} f_{\pi, p}=f_{p} \tag{31}
\end{equation*}
$$

Proof. By (29) and (26) we conclude that for $\pi<\pi^{\prime}$ we obtain

$$
\begin{aligned}
0 \leqslant \bar{f}_{\pi, p}-\bar{f}_{\pi^{\prime}, p} & \leqslant \bar{f}_{\pi, p}-\underline{f}_{\pi^{\prime}, p} \\
& \leqslant \bar{f}_{\pi, p}-\underline{f}_{\pi, p} \leqslant \tilde{O}(f, \pi)
\end{aligned}
$$

but by Remark 4 we have

$$
\lim _{\pi} \tilde{O}(f, \pi)=0
$$

so that we obtain

$$
0 \leqslant \bar{f}_{\pi, p}-\bar{f}_{\pi^{\prime}, p}<\varepsilon
$$

for every $\varepsilon>0$ provided that π is chosen appropriately. Therefore $\lim _{\pi} \bar{f}_{\pi, p}=\bar{f}_{p}$ exists. Similarly, we have

$$
\begin{aligned}
0 \leqslant \underline{f}_{\pi^{\prime}, p}-\underline{f}_{\pi, p} & \leqslant \bar{f}_{\pi^{\prime}, p}-\underline{f}_{\pi, p} \\
& \leqslant \bar{f}_{\pi, p}-\underline{f}_{\pi, p} \leqslant \tilde{O}(f, \pi)<\varepsilon
\end{aligned}
$$

which implies that $\lim _{\pi} f_{\pi, p}=f_{p}$ exists. Applying (26) once more we conclude that $\bar{f}_{p}=f_{p}=f_{p}^{*}$. We need to show that $f_{p}^{*}=f_{p}$ so let $\varepsilon>0$ be given. Then there is a partition π such that

$$
\bar{f}_{\pi}<f+\varepsilon \quad \text { and } \quad f<\underline{f}_{\pi}+\varepsilon
$$

which implies upon using (15) and (16) that

$$
\bar{f}_{\pi, p}<f_{p}+\varepsilon \quad \text { and } \quad f_{p}<\underline{f}_{\pi, p}+\varepsilon
$$

Taking the limit over π, we conclude that

$$
f_{p}^{*}<f_{p}+\varepsilon \quad \text { and } \quad f_{p}<f_{p}^{*}+\varepsilon
$$

or

$$
f_{p}=f_{p}^{*}
$$

Theorem 5. Let $f \in Q^{*}$ with best monotone L_{p}-approximation f_{p}. Then

$$
\begin{equation*}
\lim _{\pi} \bar{f}_{\pi, \infty}=\lim _{\pi} f_{\pi, \infty}=f_{\infty}=\lim _{p \rightarrow \infty} f_{p} \tag{32}
\end{equation*}
$$

Proof. From (30) and (27) we obtain for $\pi<\pi^{\prime}$

$$
\begin{aligned}
0 \leqslant \bar{f}_{\pi, \infty}-\bar{f}_{\pi^{\prime}, \infty} & \leqslant \bar{f}_{\pi, \infty}-\underline{f}_{\pi^{\prime}, \infty} \\
& \leqslant \bar{f}_{\pi, \infty}-\underline{f}_{\pi, \infty} \leqslant \tilde{O}(f, \pi)<\varepsilon
\end{aligned}
$$

for an appropriate choice of π. Hence $\lim _{\pi} \bar{f}_{\pi, \infty}=\bar{f}_{\infty}$ exists.

Similarly, we have

$$
\begin{aligned}
0 \leqslant \underline{f}_{\pi^{\prime}, \infty}-\underline{f}_{\pi, \infty} & \leqslant \bar{f}_{\pi^{\prime}, \infty}-\underline{f}_{\pi, \infty} \\
& \leqslant \bar{f}_{\pi, \infty}-\underline{f}_{\pi, \infty} \leqslant \tilde{O}(f, \pi)<\varepsilon
\end{aligned}
$$

for an appropriate choice of π. Hence $\lim _{\pi} \underline{f}_{\pi, \infty}=\underline{f}_{\infty}$ exists. Now it follows from (27) that

$$
\bar{f}_{\infty}=\underline{f}_{\infty}=f_{\infty} .
$$

We still need to show that f_{p} converges uniformly to f_{∞}. Let $\varepsilon>0$ be given. Then for an appropriate π we have by the last theorem that

$$
\left|f_{p}-\bar{f}_{\pi, p}\right|<\varepsilon / 3
$$

for all $p, 1<p<\infty$, and also we have

$$
\left|\bar{f}_{\pi, \infty}-f_{\infty}\right|<\varepsilon / 3 .
$$

Since $\bar{f}_{\pi, \infty}=\lim _{p \rightarrow \infty} \bar{f}_{\pi, p}$ by definition, then there exists a real number $p_{0}>1$ such that

$$
\left|\bar{f}_{\pi, p}-\bar{f}_{\pi, \infty}\right|<\varepsilon / 3
$$

for all $p>p_{0}$. Combining these last three inequalities, we obtain

$$
\begin{aligned}
\left|f_{p}-f_{\infty}\right| & \leqslant\left|f_{p}-\bar{f}_{\pi, p}\right|+\left|\bar{f}_{\pi, p}-\bar{f}_{\pi, \infty}\right|+\left|\bar{f}_{\pi, \infty}-f_{\infty}\right| \\
& \leqslant \varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
\end{aligned}
$$

for all $p>p_{0}$. This completes the proof.
Corollary 1. Let f and g be in Q^{*}. Then
(a) if $f \leqslant g$ on Ω, then $f_{\infty} \leqslant g_{\infty}$, and
(b) if c is a real constant, then $(f+c)_{\infty}=f_{\infty}+c$.

Proof. This corollary is an immediate consequence of Remark 3 and the fact that $\lim _{p \rightarrow \infty} f_{p}=f_{\infty}$.

Theorem 6. Suppose $f \in Q^{*}$ is continuous. Then f_{p} is continuous.
Proof. Let x be an arbitrary but fixed point in $(0,1)$ and let $\varepsilon>0$ be given. Then

$$
\begin{gather*}
\left|f_{p}(x)-f_{p}(y)\right| \leqslant\left|f_{p}(x)-\bar{f}_{\pi, p}(x)\right|+\left|\bar{f}_{\pi, p}(x)-\bar{f}_{\pi, p}(y)\right| \\
+\left|\bar{f}_{\pi, p}(y)-f_{p}(y)\right| \tag{33}
\end{gather*}
$$

By Theorem 4, we know that

$$
f_{p}(y)=\lim _{\pi} \bar{f}_{\pi, p}(y)
$$

for all $y \in \Omega$. Therefore we can choose $\pi=\left\{t_{i}\right\}_{i=0}^{n}$ such that
(1) Each of the first and third terms on the right-hand side of (33) is less than $\varepsilon / 3$.
(2) If \bar{f}_{π} can be written as

$$
\begin{equation*}
\bar{f}_{\pi}=\bar{a}_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{n} \bar{a}_{i} I_{\left(t_{i-1}, t_{i}\right]} \tag{34}
\end{equation*}
$$

then we can have by uniform continuity of f over Ω that

$$
\begin{equation*}
\left|\bar{a}_{i}-\bar{a}_{i-1}\right|<\varepsilon / 9 \tag{35}
\end{equation*}
$$

for all $i=2,3, \ldots, n$.
Thus, (33) becomes

$$
\begin{equation*}
\left|f_{p}(x)-f_{p}(y)\right|<\varepsilon / 3+\varepsilon / 3+\left|\bar{f}_{\pi, p}(x)-\bar{f}_{\pi, p}(y)\right| \tag{36}
\end{equation*}
$$

for all $y \in \Omega$. All we need now is to show the existence of a real number $\delta>0$ such that

$$
\begin{equation*}
\left|\bar{f}_{\pi, p}(x)-\bar{f}_{\pi, p}(y)\right|<\varepsilon / 3 \tag{37}
\end{equation*}
$$

for all $y \in(x-\delta, x+\delta)$. To show this we first observe that if \bar{f}_{π} is given by (34), then $\bar{f}_{\pi, p}$ must be given by

$$
\begin{equation*}
\bar{f}_{\pi, p}=b_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{n} b_{i} I_{\left(t_{i-1}, t_{l}\right]} \tag{38}
\end{equation*}
$$

for some real numbers $b_{1} \leqslant b_{2} \leqslant \cdots \leqslant b_{n}$. We now have two cases to consider.

Case 1: $\quad t_{j-1}<x<t_{j}$ for some $j \leqslant n$. Then it follows that

$$
\left|\bar{f}_{\pi, p}(x)-\bar{f}_{n, p}(y)\right|=\left|b_{j}-b_{j}\right|=0
$$

for all $y \in\left(t_{j-1}, t_{j}\right]$. Let $\delta=\min \left\{\left(x-t_{j-1}\right),\left(t_{j}-x\right)\right\}$. Then (36) becomes

$$
\left|f_{p}(x)-f_{p}(y)\right|<(2 \varepsilon / 3)+0<\varepsilon
$$

for all $y \in(x-\delta, x+\delta)$ which implies the continuity of f_{p} at x in this case.

Figure 1

Case 2: $\quad x=t_{j}$ for some $j<n$. Then it follows from (38) that

$$
\left|\bar{f}_{\pi, p}(x)-\bar{f}_{\pi, p}(y)\right|=\left|b_{j}-b_{j}\right|=0
$$

for all $y \in y\left(t_{j-1}, x\right]$. Thus, let us consider $y \in\left(x, t_{j+1}\right]$ and suppose that

$$
\left|\bar{f}_{\pi, p}(y)-\bar{f}_{\pi, p}(x)\right|=\bar{f}_{\pi, p}(y)-\bar{f}_{\pi, p}(x)=b_{j+1}-b_{j}>\varepsilon / 3 .
$$

Then we obtain (Fig. 1)

$$
\varepsilon / 3<b_{j+1}-b_{j}=\left(b_{j+1}-\bar{a}_{j+1}\right)+\left(\bar{a}_{j+1}-\bar{a}_{j}\right)+\left(\bar{a}_{j}-b_{j}\right)
$$

since $\left(\bar{a}_{j+1}-\bar{a}_{j}\right)<\varepsilon / 9$ by (35); then we may assume without loss of generality that

$$
\begin{equation*}
b_{j+1}-\bar{a}_{j+1}>\varepsilon / 9 \tag{39}
\end{equation*}
$$

In this case let

$$
\begin{equation*}
b_{j+1}^{*}=b_{j+1}-\varepsilon / 9 \tag{40}
\end{equation*}
$$

Hence

$$
\begin{aligned}
b_{j+1}^{*}-b_{j} & =\left(b_{j+1}-b_{j}\right)-\varepsilon / 9 \\
& >\varepsilon / 3-\varepsilon / 9=2 \varepsilon / 9>0
\end{aligned}
$$

Let $\bar{f}_{\pi, p}^{*}$ be the monotone increasing step function defined by

$$
\begin{aligned}
\bar{f}_{\pi, p}^{*}= & b_{1} I_{\left[t_{0}, t_{1}\right]}+\sum_{i=2}^{j} b_{l} I_{\left(t_{i-1}, t_{l}\right]} \\
& +b_{j+1}^{*} I_{\left(t_{j}, t_{j+1}\right]}+\sum_{i=j+2}^{n} b_{i} I_{\left(t_{i-1}, t_{l}\right]}
\end{aligned}
$$

Then

$$
\begin{align*}
\left\|\bar{f}_{\pi, p}^{*}-\bar{f}_{\pi}\right\|_{p}^{p}= & \sum_{i=1}^{j}\left(t_{i}-t_{i-1}\right)\left|b_{i}-\bar{a}_{i}\right|^{p}+\left(t_{j+1}-t_{j}\right)\left|b_{j+1}^{*}-\bar{a}_{j+1}\right|^{p} \\
& +\sum_{i=j+2}^{n}\left(t_{i}-t_{i-1}\right)\left|b_{i}-\bar{a}_{i}\right|^{p} \tag{41}
\end{align*}
$$

while

$$
\begin{equation*}
\left\|\vec{f}_{\pi, p}-\bar{f}_{\pi}\right\|_{p}^{p}=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left|b_{i}-\bar{a}_{i}\right|^{p} \tag{42}
\end{equation*}
$$

but observe that (39) and (40) imply that

$$
\begin{aligned}
b_{j+1}^{*}-\bar{a}_{j+1} & =b_{j+1}-\varepsilon / 9-\bar{a}_{j+1} \\
& =\left(b_{j+1}-\bar{a}_{j+1}\right)-\varepsilon / 9>\varepsilon / 9-\varepsilon / 9=0
\end{aligned}
$$

or

$$
0<b_{j+1}^{*}-\bar{a}_{j+1}<b_{j+1}-\bar{a}_{j+1}
$$

or

$$
\left|b_{j+1}^{*}-\bar{a}_{j+1}\right|^{p}<\left|b_{j+1}-\bar{a}_{j+1}\right|^{p},
$$

which implies by comparing (41) and (42) that

$$
\left\|\bar{f}_{\pi, p}^{*}-\bar{f}_{\pi}\right\|_{p}<\left\|\bar{f}_{\pi, p}-\bar{f}_{\pi}\right\|_{p}
$$

Contradiction! Therefore our assumption is false and hence we conclude that

$$
\left|\bar{f}_{\pi, p}(y)-\bar{f}_{\pi, p}(x)\right|<\varepsilon / 3
$$

for all $y \in\left(x, t_{j+1}\right]$. Take $\delta=\min \left\{\left(x-t_{j-1}\right),\left(t_{j+1}-x\right)\right\}$ to conclude that (36) becomes

$$
\left|f_{p}(x)-f_{p}(y)\right|<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
$$

for all $y \in(x-\delta, x+\delta)$. This completes the proof.

Corollary 2. The function $f_{\infty}=\lim _{p \rightarrow \infty} f_{p}$ is continuous when f is continuous.

Proof. Since f_{∞} is the uniform limit of continuous functions, it must be continuous.

Example 1. Let f be the real-valued continuous function on $[0,1]$ defined by

$$
\begin{aligned}
f(x) & =\sin \frac{15}{2} \pi\left(x-\frac{1}{15}\right), & & 0 \leqslant x \leqslant \frac{1}{3}, \\
& =2 \sin \frac{15}{2} \pi\left(x-\frac{1}{3}\right), & & \frac{1}{3}<x \leqslant \frac{3}{3}, \\
& =15\left(x-\frac{3}{5}\right), & & \frac{3}{5}<x \leqslant \frac{2}{3}, \\
& =1+\sin \frac{15}{2} \pi\left(x\left(x-\frac{2}{3}\right),\right. & & \frac{2}{3}<x \leqslant 1 .
\end{aligned}
$$

Then f_{∞} is the real-valued nondecreasing continuous function given by

$$
\begin{aligned}
f_{\infty}(x) & =\sin \frac{15}{2} \pi\left(x-\frac{1}{15}\right), & & 0 \leqslant x \leqslant \frac{1}{15}, \\
& =0, & & \frac{1}{15}<x \leqslant \frac{3}{5}, \\
& =15\left(x-\frac{3}{5}\right), & & \frac{3}{5}<x \leqslant \frac{2}{3}, \\
& =1, & & \frac{2}{3}<x \leqslant \frac{14}{15}, \\
& =1+\sin \frac{15}{2} \pi\left(x-\frac{2}{3}\right), & & \frac{14}{15}<x \leqslant 1 .
\end{aligned}
$$

It is shown in [3, p. 664, Theorem 2] that a nondecreasing function g is a best L_{∞}-approximation to $f \in Q^{*}$ by elements of M^{*} if and only if

$$
g \leqslant g \leqslant \bar{g}
$$

where \underline{g} and \bar{g} are given by

$$
\underline{g}(x)=\sup \{(f(z)-\theta): z \in[0, x]\}, \quad x \in[0,1]
$$

and

$$
\bar{g}(x)=\inf \{(f(z)+\theta): z \in[x, 1]\}, \quad x \in[0,1]
$$

where

$$
\theta=d\left(f, M^{*}\right)=\inf \left\{\|f-h\|_{\infty}: h \in M^{*}\right\}
$$

Thus, if f is the function in Example 1, then it is easily seen that

$$
d\left(f, M^{*}\right)=2
$$

and hence it follows that

$$
\bar{g}(x)=(f(x)+2) I_{(8 / 15,3 / 5]}+2 I_{(3 / 5,13 / 15]}+(f(x)+2) I_{(13 / 15,1]}
$$

and

$$
\underline{g}(x)=(f(x)-2) I_{[0,2 / 15]}-I_{(2 / 15,16 / 45]}+(f(x)-2) I_{(16 / 45,2 / 5]} .
$$

Figure 2

Finally, notice that f_{∞} is not the average of g and \bar{g} on $[0,1]$, e.g., on [$\left.0, \frac{1}{15}\right]$ (see Fig. 2)

$$
f_{\infty} \neq \frac{1}{2}(\underline{g}+\bar{g}) \quad \text { everywhere }
$$

Example 2. Let f be the real-valued step function defined on $[0,1]$ by

$$
f=3 I_{[0,1 / 15]}+5 I_{(3 / 15,4 / 15]}+7 I_{(8 / 15,9 / 15]}
$$

Figure 3 is a sketch of f and the corresponding f_{2}, f_{4}, and f_{∞}. Notice that f_{2} is constant while f_{4} is increasing and by our earlier results f_{p} should converge monotonically to

$$
f_{\infty}=\frac{3}{2} I_{[0,1 / 5]}+\frac{5}{2} I_{(1 / 5,8 / 15]}+\frac{7}{2} I_{(8 / 15,1]}
$$

as $p \rightarrow \infty$.
Remark 5. If f is given by

$$
\begin{equation*}
f=k_{1} I_{\left[0, t_{1}\right]}+k_{2} I_{\left(t_{2}, t_{3}\right]}+\cdots+k_{n} I_{\left(t_{2(n-1)}, t_{2 n-1}\right]} \tag{43}
\end{equation*}
$$

where

$$
2<k_{1}<k_{2}<\cdots<k_{n}
$$

Figure 3
and

$$
\begin{aligned}
t_{1}=\delta & =\left(\sum_{i=1}^{n} k_{j}\right)^{-1}, \\
t_{2 i} & =\left(\sum_{j=1}^{i} k_{j}\right) \delta, \\
t_{2 i+1} & =t_{2 i}+\delta,
\end{aligned} \quad i \geqslant 2,
$$

then for every p, f_{p} must have the form

$$
\begin{equation*}
f_{p}=\zeta_{1} I_{\left[0, t_{2}\right]}+\zeta_{2} I_{\left(t_{2}, t_{4}\right]}+\cdots+\zeta_{n} I_{\left(t_{2(n-1)}, 1\right]} \tag{44}
\end{equation*}
$$

where $0<\zeta_{1} \leqslant \zeta_{2} \leqslant \cdots \leqslant \zeta_{n}$ and ζ_{i} depends on p for all i.
Suppose we want to compute f_{2} which has form (44). Then ζ_{1} must be the unique real number minimizing the function

$$
g_{1}(\zeta)=\delta\left(k_{1}-\zeta\right)^{2}+\delta\left(k_{1}-1\right) \zeta^{2}
$$

Differentiating g_{1} we obtain

$$
\begin{aligned}
g_{1}^{\prime}\left(\zeta_{1}\right) & =-2 \delta\left(k_{1}-\zeta_{1}\right)+2 \delta\left(k_{1}-1\right) \zeta_{1} \\
& =2 \delta k_{1}\left(\zeta_{1}-1\right)=0 .
\end{aligned}
$$

Thus $\zeta_{1}=1$. Similarly ζ_{i} is the unique real number minimizing the function

$$
g_{i}(\zeta)=\delta\left(k_{i}-\zeta\right)^{2}+\delta\left(k_{i}-1\right) \zeta^{2}
$$

which implies that $\zeta_{i}=1$ for all $i \leqslant n$. Hence $f_{2} \equiv 1$ on $[0,1]$.
Next, let us compute f_{p} for $p>2$, where f_{p} has form (44) and f is given by (43). Then ζ_{i} will be the unique real number minimizing the function

$$
g_{i}(\zeta)=\left(k_{i}-\zeta\right)^{p}+\left(k_{i}-1\right) \zeta^{p}
$$

Differentiating g_{i} we obtain

$$
g_{i}^{\prime}\left(\zeta_{i}\right)=-p\left(k_{i}-\zeta_{i}\right)^{p-1}+p\left(k_{i}-1\right) \zeta_{i}^{p-1}=0
$$

Dividing by ($p \zeta_{i}^{p-1}$), we obtain

$$
\left.\left(k_{i}-1\right)=\left(k_{i} / \zeta_{i}\right)-1\right)^{p-1}
$$

or

$$
\begin{equation*}
\zeta_{i}=k_{i} /\left(\left(k_{i}-1\right)^{1 / \lambda}+1\right) \tag{45}
\end{equation*}
$$

where $\lambda=p-1$ and $i=1,2, \ldots, n$.
Observe that as $\lambda \rightarrow \infty$ in (45), $\zeta_{i} \rightarrow k_{i} / 2$, which says that f_{p} converges to a function f_{∞} given by

$$
\begin{equation*}
f_{\infty}=\left(k_{1} / 2\right) I_{\left[0, t_{2}\right]}+\left(k_{2} / 2\right) I_{\left(t_{2}, t_{4}\right]}+\cdots+\left(k_{n} / 2\right) I_{\left(t_{n-1}, 1\right]}, \tag{46}
\end{equation*}
$$

which is consistent with our definition of f_{∞}, where f is defined above.
Finally, we show that for a fixed $\lambda>1$ and a fixed i, the value of $\zeta=\zeta_{i}$ increases as $k=k_{i}$ increases. From (45), consider

$$
\zeta=\psi(k)=k /\left((k-1)^{1 / \lambda}+1\right) .
$$

We show that $\psi^{\prime}(k)>0$ for all $k>2$. Thus, letting $\alpha=1 / \lambda$, we have

$$
\begin{aligned}
\psi^{\prime}(k) & =\frac{1}{(k-1)^{\alpha}+1}-k\left[\frac{(k-1)^{\alpha-1}}{\left((k-1)^{\alpha}+1\right)^{2}}\right] \\
& =\frac{1}{(k-1)^{\alpha}+1}\left[1-\frac{\alpha k(k-1)^{\alpha-1}}{(k-1)^{\alpha}+1}\right]
\end{aligned}
$$

To show that $\psi^{\prime}(k)>0$, all we need to show is that

$$
\begin{equation*}
\frac{\alpha k(k-1)^{\alpha-1}}{(k-1)^{\alpha}+1}<1 \tag{47}
\end{equation*}
$$

But indeed we have

$$
\begin{aligned}
\frac{\alpha k(k-1)^{\alpha-1}}{(k-1)^{\alpha}+1} & =\frac{(k-1)^{\alpha} \alpha k(k-1)^{-1}}{(k-1)^{\alpha}\left(1+1 /(k-1)^{\alpha}\right)} \\
& =\frac{\alpha k}{(k-1)\left(1+1 /(k-1)^{\alpha}\right)} \\
& =\frac{k}{\lambda\left(k-1+\left((k-1) /(k-1)^{\alpha}\right)\right)}
\end{aligned}
$$

Since $\quad \alpha=1 / \lambda<1$, then $(k-1) /(k-1)^{\alpha}>1$, which implies that $\left(k-1+\left((k-1) /(k-1)^{\alpha}\right)\right)>k$, or

$$
\frac{k}{\lambda\left(k-1+\left((k-1) /(k-1)^{\alpha}\right)\right)}<\frac{k}{\lambda k}=\frac{1}{\lambda}<1
$$

Hence, (47) is true and $\psi^{\prime}(k)>0$.

References

1. D. Landers and L. Rogge, On projections and monotony in L_{p}-spaces, Ann. Probab. 7 (1979), 363-369.
2. V. A. Ubhaya, Isotone optimization II, J. Approx. Theory 12 (1974), 146-159.
3. V. A. Ubhaya, Almost monotone approximation in L_{∞}, J. Math. Anal. Appl. 49 (1975), 659-679.
