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Let Q denote the Banach space (sup norm) of quasi-continuous functions defined
on the interval [0, 1]. Let C denote the subspace comprised of continuous functions.
Met M denote the closed convex cone in Q comprised of nondecreasing functions.
For 1 E Q and 1 <p < ex:>, let Ip denote the best L p-approximation to1 by elements
of M. It is shown that1;, converges uniformly as p ..... ex:> to a best L 00-approximation
to 1 by elements of M. If1 E C, then each 1;, E C; so100 E C.

We begin with some introductory remarks and notation. By a function,
unless we specify otherwise, we mean a real-valued function defined on the
interval [0, I].

A function f is in Q if and only if (a) f(x+) = limy~x+f(y) exists,
0::;;; x < 1, and (b) f(x-) = limy..x-f(Y) exists, 0 < x::;;; 1.

Let P denote the set of partitions 7C = {td7=0 of [0, I] (Le.,
0= to < t l < .,. < tn = 1), let IE denote the indicator function of a subset E
of [0, 1] (i.e., IE(X) = 1 if x E E and IE(X) = 0 otherwise), and let S denote
the dense linear subspace of Q comprised of simple step functions f =

2:7=0 a;I[111 + 2:7=1 bi/lli_I,I)'
Consider the elements f of Q as bounded Lebesgue measurable functions,

and let [f] = {g: g is measurable, f = g a.e.} be the corresponding element
of LOC). A functionfin Q is zero a.e. <:> f(x+) =f(x-) = 0,0 <x < 1. Thus,
if we let Q* denote the space of functions f in Q such that f(O) = f(O +) and
f(x) = f(x -), 0 <x ::;;; 1, then we have a linear isometry between Q* and the
embedding of Q in LOC)' This isometry permits us to restrict our attention to
Q*, so we let M* =Mn Q* and S* = sn Q*. Thus, fE S* if there exists
7C E P such that f = a l 1[10,1" +2:i> 1 ai/(ti_I,li)'

For a bounded function f and 7C E p,!" E S * is defined by

!,,(x) = sup{f(y): y E (to, tIl},

= sup{f(y): y E (ti _ P till,

!" is defined by replacing sup with info
9

xE[to,ttl,

x E (t i _ P til, i> 1;
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10 DARST AND SAHAB

A bouned function I is in Q* if and only if for each e > 0 there exists
7r E P such that 0 ~!" - I" < e. Thus, lim"!,, = lim" I" = I (uniformly),
IE Q*, where lim" denotes the Moore-Smith or directed set limit. The fact
that S* is dense in Q* permits us to use a result of Ubhaya for functions
defined on a finite partially ordered set.

Because L p is a uniformly convex Banach space, 1 < p < 00, for each
IE Q* there is a unique nearest point I p E M*. We show that I p converges
uniformly asp~ 00 to a best Leo-approximation leo to/by elements of M*.

After establishing convergence of {Ip }p > I> we conclude with two
examples. The first example shows how I eo compares with the set of all best
L eo-approximations to f, and the second example points out that I eo and I p

(for large p) may increase while 12 is a constant function. The latter example
suggests that the presence of a trend in a data sequence may depend on how
one defines trend.

To establish convergence of {Ip }p > I> we recall the following theorem of
Ubhaya [2]:

Let X = {XI> x 2 ,... , xn } be a finite partially ordered set and let
I = {I; }7~ 1 = {/(x;) }7= I be a real-valued function defined on X. For each p,
I <P < 00, define a weighted p-norm ofI by

l n Jlip

1l/llw.p = i~l Wp,i II;IP
, (1)

where wp = {Wp ,d7= 1 >0 is a given weight function defined on X. Similarly,
if W= {WI} 7= I >0 is a weight function, define the weighted uniform norm

1IIIeo ofI by

11I11 eo = m~x Wi 11;1·
l<r<n

(2)

(3)

DEFINITION. A subset L ~ X is a lower set if Xi ELand xj E X, xj ~ Xi
implies that xj E L. Similarly a subset U~ X is an upper set if Xi E U and
xj EX, xj ~ Xi implies that xj E U.

DEFINITION. Let 1 denote the class of monotone increasing functions
on X, i.e., the function h = {h i }7=1 E1 if h(x/) = hi~ hj = h(xj ) whenever
XI' xjEX and Xi~Xj'

Fact 1 (Ubhaya). Let I = {I;} 7= 1 be fixed. For each p, I < P < 00, let
gp= {gp,;} 7=1 be the function defined on X by

gp i = max min Up(L n U)
, tu:/eU) IL:ieLI

= min min U (L n U),
(L:/eLI (U:ieUI p
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where Land U are lower and upper sets, respectively, and Up(L n U) is the
unique real number minimizing LjeI.nu Wp,j I~ - ul P, Then g is the unique
monotone increasing function satisfying

iif·- gliw,p = inf{lIf - hilw,p: h Elf'}

or

THEOREM I (Ubhaya). Let X and f be as defined above, For each p,
I < p < 00, let wp= IWp,i}7~ I > 0 be a weight function and assume that
there exists a weight function W = lwd7-t >0 such that

o< lim inf(wpjwf) ~ lim sup(wpjwf) < 00
p-oc p-oc

(5)

for all i. Then the monotone increasing functions gp' 1 <p < 00, defined by
(3) and satisfying (4) converge as p ..... 00 to a monotone increasing function
goo = I goo.;}7~ I which satisfies

Ilf - glloo = infilif - hll",: h E ·~'f

or

Moreover, for every i ~ n

g .. = lim g .= max ~in Uoo(L n U)
oc:..1 p ..... oc. P.I (U:iEl/1 1I.:1EL)

= min max UXJ(L n U),
(I.:leL) (U:leC)

(7)

where Uoo(L n U) is the unique real number minimizing
maxjeLnl, wj Ijj - u Ifor all real u.

Remark I. Notice that if there exist real numbers 0, p such that
0< 0 ~ Wp,i <P for all p and all i, then clearly (5) holds if and only if
WI = 1 for all i; or else if WI < 1, then wf ..... 0 as p ..... 00, and if Wi> 1, then
Wi ..... 00 as p ..... 00, In either case, (5) can not be satisfied. In our application
of Theorem 1, Wp,l = /1 - /1_1 and WI = 1, i ~ n.

LEMMA 1. If fE S:, /henfp E S: for all p, 1 < p < 00.
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Proof. Suppose that 1;, is not a constant a.e. on some subinterval
(ti -\, til· Then let

1= essinf{/p(t): ti-I < t ~ ti }

and

u = essup{1;,(t): ti - I < t ~ ti }.

Clearly 1< u. Choose eE [I, uI such that

1.1} - el = inf{IJi - rl: r E [I, u]}.

Then the monotone increasing function I: defined by

I:(t) = e,
= Ip(t),

ti_l<t~ti'

otherwise,

is a better best Lp-approximation to I since

[

n 1/ IJ] lip

III - 1:11 = I~I f'/_ I
1.1; - lp(t)I

P
dt +~J-I IJi - elPdt

I*i

[

n 1/ IJ ] lip

< ~I t-I Iii - Ip(t)IP dt + {J-I lJi - Ip(t)I
P

dt

I*i

Or

This contradiction shows that I p must have a constant value everywhere on
(ti -\, til and hence/p E S:.

THEOREM 2. Let I E S: be given by

n

I = II1[0,(1) + L /;111 /_ 1•1/),
1=2

For every p, 1 < p < 00, let wp= {wp,di=1 be defined by

Wp,l = t/- t/_ I

for all i. Let gp= {gp,tli=1 be as defined by (3). Thenlp is given by

n

f p= gp,II\O.liI + L gp,/III/_",t!·
1=2

(8)

(9)

(10)
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Proof By the last lemma we haveJ;, E S:. For every i, let

13

i = 1,2,,,., n,

and let X = {xl''''' x,,}. Consider {it} 1= I as a finite real-valued function
defined on X and let {hdi= I (hi <" hj for all i < j) be a monotone increasing
function on X. Then by substituting the values of Wp,i in Eq. (4) we conclude
that

or

which is equivalent to the conclusion that

where

"
h = hlIro,lI! + L hiIlli_hld

i=2

is any monotone increasing function belonging to S:. I

THEOREM 3. Let f E S: and let f p be as given in Theorem 2. Then f p

converges as p ~ 00 to the monotone increasing function f:JJ E S: given by

"
foo = goo,IIro,lI! + L goo,iIlll_hld'

i=2
(11 )

where goo,i = limp .... oo gp,i is given by (7). Moreover, foo is a best L oo
approximation to f by monotone increasing functions.

Proof Let X and wp be as defined above, To apply Theorem 1, observe
that (5) holds if and only if Wi = 1 for all i (see Remark 1). In this case, the
theorem implies that gp = {gp,d 1= I converges to goo = {g00.tl7= I which is
given by (7). Therefore, limp ....oo J;, exists and it is given by (11).

For the last part of the theorem, substitute for the values of Wi in (6) to
obtain

(12)
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Thus, 100 is a best L 00-approximation to I by elements of S:. Let h be a
monotone increasing function defined on n. We show that there is a
monotone increasing function g E S: such that

III - glloo ~ III - hll oo '

Indeed for i = 1,2,..., n, let

gi = {![essup(k(x)) +essinf(h(x))]: ti _ 1 <x ~ til.

Then clearly

If; - gil ~ essup If; - h(x)l,

for all i. Now define g on n by

n

g = g 1I[O,ld + L g;!(tt-lot;)·
i=2

Then g E S: and it follows from the last inequality together with (12) that

III - 1001100 ~ III - glloo ~ III - hll oo '

This concludes the proof.

Remark 2. Let I E S *. Then there is a partition n of n such that I E S:.
Using Lemma 1 and the conclusions of Theorems 2 and 3, we find the best
Lp-approximations I p , 1 <p < 00, to I by monotone increasing functions.
Then we showed that the monotone increasing function 100 = limp ....oo I p is
well defined.

To put this another way, denote I by I" to indicate that I E S:. Similarly,
let

Then

is well defined.

1",00 = (f,,)oo = lim I".p
p .... oo

(13)

(14)

Next, we generalize these results to Q*, the space of all quasi-continuous
real-valued functions which are left continuous at every point of n except at
0, where they are right-continuous. We start with
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Remark 3. (a) Let f and g be elements of Q*. Then it is shown in [I,
p. 366, Theorem 3(ii)] that iff ~ g, then

(15)

for all p, 1 <p < 00,

(b) It is clear that for any constant c and for all f E Q* we have

(16)

for all p, 1 <p < 00.

DEFINITION. Let f E Q* and let n = {t;} 7= 0 be a partition of Q. The
oscillation off over [to, t I] is defined by

and for i = 2, 3,..., n; the oscillation off over (t i _ l' til is defined by

Finally, we define the oscillation off over n by

O(j, n) = max {O(j, [to' tl))' O(j, (ti_1> ti)): i= 2, 3,... , n}. (17)

LEMMA 2. Let n' = {til7~0 be a refinement of n = {td7=0 (written
n <n' ). Then

O(j, n' )~ O(j, n).

Proof Since t; ~ tI' then it is clear from the above definition that

(18)

(19)

Next, let 2 ~ k ' ~ n' . Then there exists some k, 1 ~ k ~ n, such that
(t~'_I' t~,] ~ (tk _ l , td. Consequently, it follows that

By taking the sup over all k' and combining (19) we conclude (18). I

Remark 4. Let f E Q* and let e > 0 be given. Then there exists a
partition n such that

O(j, n) < e.

MO/3RII2
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Moreover, if 0 <e' < e, then we can find a refinement 1C' of 1C such that
O(j, 1C') <e'. In other words, by further refinements of 1C we can make
O(j, 1C') as small as we wish. We denote this by writing

lim O(j, 1C) = O.
"

DEFINITION. Let f E Q* and let 1C = {t /} 7=0 be a partition of n. Let J"
and [" be the step functions defined by

n

1" = 0,1[10.11) + L O/(lt_I.111
/=2

and

n

[" = f.li1[to.ltI + L g/(lt-I.ltl'
1=2

where

(20)

(21)

i = I, 2,... ,n

and

i = 1,2,..., n.

By Remark 2 we define

J".P = (J,,)p ,

[".P = ([,,)p;

and

J",oo = (J,,)oc, = lim 1",p,
p~oo

[".00 = ([,,)oco = liI~l",p·
P~~

LEMMA 3. For all p, 1 < p < 00, we have

o~1",p - [".P ~ O(f, n)

and

o~ ]",oco - [",oco ~ O(j, n).

(22)

(23)

(24)

(25)

(26)

(27)
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Proof. Let x E n. Then x E (tj_ p tjl for some j ~ n. Hence

o~l,.(x) - [,.(x) = sup{j(y): tj_ 1 <Y ~ tj } - inf{j(y): tj_ 1 <Y ~ tj }

= sup{(f(YI) - j(Y2»: YI' Y2 E (tj_ l , tjl}

= a(f, (tj_ 1 , tjD ~ a(f, 7C)

or

l,.(x) ~[,.(x)+a(f, n)

for all x E n. Therefore we obtain

1,. ~[,. + a(f, n).

17

By (15) and (16) we obtain

l,.,p ~ ([,. + a(f, n»p = [,.,p + a(f, n)

or

o~[,.,p - [,.,p ~ a(f, 7C).

Finally, we let p ~ 00 to obtain (27). I

LEMMA 4. Let j E Q* and let n <n'. Then

[,.,p ~[""P ~l,."p ~l,.,p ~[,.,p +a(f, 7C)

and

(28)

(29)

[,.,00 ~[""oo ~l,."oo ~1,.,00 ~[,..oo +a(f, n). (30)

Proof. Since n <n', then it clearly follows from their definitions that

I,. ~[,., ~1,., ~1,..

Thus, it follows from (15) and (28) that

[,.,p ~[,.',p ~l,.,.p ~l,..p ~[,.,p + a(f, 7C)

which is (29). Letting p ~ 00 we obtain (30). I

THEOREM 4. Let j E Q* with best monotone Lp-approximation jp. Then

lim1,.,p = lim [,.,p =1;,.,. ,. (31 )
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Proof. By (29) and (26) we conclude that for n < n' we obtain

o~J",P - J""P ~J".P - ["',p

~J",P - [",p ~ O(f, n),

but by Remark 4 we have

lim O(f, n) = 0,
"

so that we obtain

o~J",P - J""P <e

for every e >0 provided that n is chosen appropriately. Therefore
lim" J" ,p = Jp exists. Similarly, we have

o~[""P - [",p ~J""P - [",p

~J",P - [",p ~ O(f, n) <e,

which implies _that lim" [".P = [p exists. Applying (26) once more we
conclude that I p = [p = r:. We need to show that I: = I p so let e >0 be
given. Then there is a partition n such that

J" <I+ e and

which implies upon using (15) and (16) that

and

Taking the limit over n, we conclude that

and

or

THEOREM 5. LetfE Q* with best monotone Lp-approximationfp ' Then

limJ" 00 = limf" 00 =foo = lim J.p.
1["' n - • P--+C1J .

Proof. From (30) and (27) we obtain for n < n'

o~J",oo - J""oo ~J",oo - ["'.00

~J".oo - [",00 ~ O(f, n) < e

for an appropriate choice of n. Hence lim"J",oo =Joo exists.

(32)
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Similarly, we have

o~[""ro - [",ro ~J""ro - [".ro

~J",ro -[",ro ~ O(f, n) <e

19

for an appropriate choice of n. Hence lim" [",ro =[ro exists. Now it follows
from (27) that

Jro =[ro =/ro'

We still need to show thatlp converges uniformly to/ro . Let e >a be given.
Then for an appropriate n we have by the last theorem that

for all p, 1 <P < 00, and also we have

IJ".ro - lrol <e/3.

Since!",ro = limp-->roJ".P by definition, then there exists a real number Po> 1
such that

I!",p - !~,ro I < e/3

for all p > Po' Combining these last three inequalities, we obtain

lip - lrol ~ lip - !",pl + I!",p - !",rol + I]",ro - lrol

~ e/3 +e/3 + e/3 = e

for all p > Po' This completes the proof. I

COROLLARY 1. Let I and g be in Q*. Then

(a) if/~ g on n, then 100 ~ goo' and

(b) if c is a real constant, then (f + c)oo = 100 + c.

Proof This corollary is an immediate consequence of Remark 3 and the
fact that Iimp-->ro I p = 100 , I

THEOREM 6. Suppose IE Q* is continuous. Then Ip is continuous.

Proof Let x be an arbitrary but fixed point in (0, 1) and let e >a be
given. Then

1J;,(x) - J;,(Y)/ ~ /J;,(x) - ]".p(x)1 +I!"jx) - ]",p(Y)1

+ 1]",p(Y) - Ip(Y)!. (33)
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By Theorem 4, we know that

for all yEn. Therefore we can choose 7l: = {t;}7~o such that

(1) Each of the first and third terms on the right-hand side of (33) is
less than e/3.

(2) IfJ" can be written as

n

J" = iil/llo.lil + L iii/IIi_I,l,I'
i~2

then we can have by uniform continuity off over n that

(34)

(35)

for all i = 2, 3,..., n.
Thus, (33) becomes

Ifix) - J;,(Y)I < e/3 + e/3 + IJ".p(x) - J",p(Y)1 (36)

for all yEn. All we need now is to show the existence of a real number
o>0 such that

IJ",ix) - J",p(Y)1 <e/3 (37)

for all Y E (x - 0, x + 0). To show this we first observe that ifJ" is given by
(34), then J",P must be given by

n

J".P =bl/llo.lli + L bl/lll_t,11I
;=2

(38)

for some real numbers bl ~ b2 ~ • ., ~ bn • We now have two cases to con
sider.

Case l: tj _ 1 <x < tj for some j ~ n. Then it follows that

IJ".ix) - J",p(Y)1 = Ibj - bjl =0

for allyE(tj _1>tj ]. Leto=min{(x-tj _ I ), (t}-x)}, Then (36) becomes

Ifp(x) - fp(Y)1 < (2e/3) + 0 <e

for all Y E (x - 0, x +0) which implies the continuity offp at x in this case.
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t/9

bj+l

a.
t/3 J ! <£/9

-- aj +1
>

b.
J

>

t. 1 x=t.
J - J

FIGURE I

Case 2: x = lj for some j <n. Then it follows from (38) that

I]..,p(x) - ] .. ,p(Y)1 = IbJ - bjl = 0

for all Y E y(lJ-I , x]. Thus, let us consider Y E (x, lJ + I] and suppose that

1].. ,p(Y) - ] ..,p(x)1 =]..,P(y) - ] .. ,p(x) = b)+ I - bJ>ej3.

Then we obtain (Fig. 1)

ej3 <b)+ I - bJ= (b)+ I - 0)+ I) + (0)+ I - oJ) + (oJ - bJ)

since (oJ+ I - oJ) <ej9 by (35); then we may assume without loss of
generality that

bj +I -OJ+I >ej9. (39)

In this case let
(40)

Hence

bt+ 1- bJ= (bJ+1- bJ) - ej9

> ej3 - ej9 = 2ej9 > O.

Let]:,p be the monotone increasing step function defined by

J

]:,p =bI/lto,ltI + L bl(l/_Io l/]
1=2

"+bl+ I/(lj,lj+Il + L bll(t/_tolt] ,
I=J+2
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j

IIJ:,p - J"II~ = L (ti - ti_ l ) Ibi - tlilP + (tj+ 1- tj ) Ib/+ 1- tlj+IIP
i=1

n

+ L (t i - t;_I) Ib i - tlilP
,

i=j+2

n

IIJ",p - J"II~ = L (t i - ti_ l ) Ibi - tlilP
;

i=1

(41 )

(42)

but observe that (39) and (40) imply that

or

or

which implies by comparing (41) and (42) that

IIJ:,p - J"llp< IIJ",p -l,.llp.
Contradiction! Therefore our assumption is false and hence we conclude that

IJ",p(Y) - J",p(x)1 < e/3

for all yE (X,tj+I]' Take b=min{(x-tj _ I), (tj+I-X)} to conclude that
(36) becomes

Ifp(x) - fp(y)1 < e/3 +e/3 + e/3 = e

for all y E (x - 15, x +0). This completes the proof. I

COROLLARY 2. The function fro = limp -+ oo f p is continuous when f is
continuous.

Proof. Since fro is the uniform limit of continuous functions, it must be
continuous. I
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EXAMPLE 1. Let I be the real-valued continuous function on [0, 1]
defined by

I(x) = sin -¥- n(x - fs),

= 2 sin -¥- n(x -!-),

=I5(x-~),

= 1 + sin -¥- n(x(x - n,

o<x<!-,

!-<x<?

~ <x <~,

~<x<1.

Then 100 is the real-valued nondecreasing continuous function given by

loo(x) = sin -¥- n(x - fs),

=0,

= I5(x - ~),

= 1,

1 . 15 ( 2)= + sInTn x- 3'

0< x <-is,
-is <x <~,

~ <x <~,

~ < x < :~,

It is shown in [3, p. 664, Theorem 2] that a nondecreasing function g is a
best Loo-approximation to IE Q* by elements of M* if and only if

where 8 and g are given by

8(x) = sup {(f(z) - 0): z E [0, x]},

and

g(x) = inf{(f(z) +0): z E [x, I]},

where

x E [0, 1],

xE [0, 1],

0= d(f, M*) =inf{1I1 - h 1100 : h E M*}.

Thus, ifI is the function in Example 1, then it is easily seen that

d(f, M*) = 2

and hence it follows that

g(x) = (/(x) + 2)1(8/15,3/5] + 21(3/5,13/15] + (f(x) + 2) 1(13/15,11

and

8(x) = (f(x) - 2) 1(0,2/151 - 1(2/15,16/451 + (f(x) - 2) 1(16/45,2/51'
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FIGURE 2

f
00

Finally, notice that 100 is not the average of g and g on [0, 1], e.g., on
[0, -Is] (see Fig. 2) -

everywhere.

EXAMPLE 2. Let 1 be the real-valued step function defined on [0, 11 by

1 = 31[0.1/151 + 51(3/15,4/15) + 71(8/15,9/15)'

Figure 3 is a sketch of1 and the corresponding12'/4' and 100' Notice that
12 is constant while 14 is increasing and by our earlier results I p should
converge monotonically to

100 = V[O,I/5) + ~1(I/S.8/ISJ + ~1(8/15,l)

as p-+ 00.

Remark 5. If1 is given by

where

(43)
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_f_

_ f_

--------- fa>

--------------------------- f 4
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o 1/15 3/15 4/15

----------
------------------- f 2

--------f
8/15 9/15

FIGURE 3

and

(" )-1
[I =°= \'~I kj ,

[u = (tl kj ) 0, i ~ 2,

[2/+1=[2/+0, i~2,

then for every p, /p must have the form

(44)

where 0 <'I ~ '2 ~ ... ~ '" and 'I depends on p for all i.
Suppose we want to computef2 which has form (44). Then (I must be the

unique real number minimizing the function

Differentiating g 1 we obtain

g;«(I) = - 2o(k , - (I) + 2o(k , - 1)(1

= 2ok l«(1 - 1) = O.
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Thus (I = 1. Similarly (i is the unique real number minimizing the function

which implies that 'i = 1 for all i ~ n. Hence /2 == 1 on [0, 1].
Next, let us compute/p for p > 2, where/p has form (44) and/is given by

(43). Then (i will be the unique real number minimizing the function

Differentiating gi we obtain

Dividing by (p(f - I), we obtain

or

(45)

where A. = p - 1 and i = 1, 2,..., n.
Observe that as A. --+ 00 in (45), (i --+ kil2, which says that/p converges to a

function / co given by

which is consistent with our definition of/ co' where / is defined above.
Finally, we show that for a fixed A. > 1 and a fixed i, the value of (= 'i

increases as k = k i increases. From (45), consider

(= lfI(k)=k/«k-l)l/A + 1).

We show that lfI'(k) >0 for all k> 2. Thus, letting a = 1/..1., we have

1 [ (k-l)"-I J
lfI'(k)= (k-l)" + 1 -k «k-l)" + 1)2

I [ak(k-l)"-IJ
= (k - 1)" + 1 1 - (k - 1)" + 1 .

To show that I/I'(k) > 0, all we need to show is that

ak(k-l)"-I
(k-l)"+1 <1.

(47)



APPROXIMATION BY MONOTONE FUNCTIONS

But indeed we have

ak(k-I)"'-i (k-1)"'ak(k-1)-1
=--:-~--:--'-:--_:""""'-:-'----:---,-

(k-1)'" + 1 (k-1)"'(1 + 1/(k-1)"')

ak
=-:-:---,-:-:-:----:--:-:-::---c-:-:-

(k-1)(1 + 1/(k-1)"')

k

A(k-1 + «k-1)/(k-1)"'»'

27

Since a= 1/.1 < 1, then (k-1)/(k-1)'" > 1, which implies that
(k-1 + «k-1)/(k-1)"'» > k, or

k ~_~ 1
A(k-1 + «k-1)/(k-1)"'» <Ak - A < .

Hence, (47) is true and lfI'(k) > O.
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